Вконтакте Одноклассники Фейсбук Гугл+ Английский Испанский Итальянский Русский Украинский

Реклама

Алкины или углеводороды ряда ацетилена (ацетилен-углеводороды, ацетиленовые углеводороды)


Алкины или углеводороды ряда ацетилена (ацетилен-углеводороды, ацетиленовые углеводороды)

Определение алкинов, формула, основные химические свойства

Алкины (углеводороды ряда ацетилена) представляют собой химические вещества из группы углеводородов алифатического ряда, которые содержат одну тройную связь -С≡С-.

Общая формула алкинов СnH2n-2.

Самым простым представителем алкинового ряда является ацетилен (этин) С2Н2.

Согласно заместительной номенклатуре IUPAC названия ацетилен углеводородов образуются по названию соответствующих алкана, при этом следует заменить суффикс -ан на -ин (-ин) с обозначением положения тройной связи в цепи углеродных атомов.

Нумерацию атомов карбона начинают с того конца, к которому ближе всего находится тройная связь, например, СН3СН (СН 3) С≡ССН3 - 4-метилпентин-2.

По рациональной номенклатуре углеводороды ацетиленового ряда или алкины называют производными ацетилена, в эмпирической формуле которого атомы водорода замещаютя на радикалы: НС≡С-СН 2 СН 3 - этилацетилен.

Изомерия ацетилен углеводородов связана с положением тройной связи и разветвлением углеродной цепи. Алкины С2-С4 - это газы, С5-С16 - жидкости, а начиная с С17 - твердые субстанции.

Химические свойства алкинов

Химические свойства ацетилен углеводородов обусловленные наличием в структуре их субстанции тройной связи. Ацетиленовая (алкинная) группа -С≡С-Н или -С≡С-R имеет линейное строение, атомы углерода sp-гибридизованные. Они связаны одной σ- и двумя π-связями, при этом максимальные их плотности расположены в двух взаимоперпендикулярных участках, образуя цилиндрическое облако π-электронной плотности. Расстояние -С≡С- равно 1,1205 нм, энергия тройной связи - 836 кДж / моль. Вследствие особенностей строения тройной связи для алкинов характерны реакции окисления, присоединения, полимеризации, изомеризации и замещения. Ацетилен углеводороды присоединяют по связи -С≡С- непосредственно галогены, галогеноводороды – при наличии катализаторов (например, HgCl2, CuCl), образуя дигалогениды и тетрагалогениды.

Указанные реакции используют в производстве трихлорэтилена, тетрахлорэтилена, винилхлорида и других хлоропроизводных соединений. Гидрогенизация алкинов натрием в жидком NH3 приводит к транс-алкенов, водородом над Pd / C - до цис-алкенов. Вода присоединяется в присутствии солей Hg2 + с образованием ацетальдегида для ацетилена и кетонов для всех остальных алкинов (Реакция Кучерова). Прямая гидратация ацетилена возможна при пропускании его в смеси с парами воды при T=300-400° С над фосфатами тяжелых металлов. Реакцию гидратации ацетилена используют в промышленности для получения ацетальдегида и продуктов дальнейших его преобразований - ацетона, уксусной кислоты, спирта и т.д. Спирты взаимодействуют с ацетилен углеводородами в присутствии ROH, BF3 или HgO, алкоксиды щелочных металлов, солей меди при температуре 150-200° С.

Продукты реакции - виниловые эфиры, которые используются в производстве полимеров, эмульгаторов, смазочных материалов и т.д. Аналогично ацетилен углеводородам присоединяются также карбоновые кислоты (при этом в качестве катализатора применяют HgSO4, ацетаты Cd или Zn на активированном угле), амиды кислот, амины, тиолы и другие с образованием виниловых соединений, например:

карбоновые кислоты взаимодействуют с ацетилен углеводородами

Винилацетат широко применяют для получения полимера поливинилацетата (ПВА). Путем присоединения к ацетилену цианидной кислоты или при взаимодействии с СО и спиртами, NH3, а также аминами в присутствии в качестве катализатора Ni (CO) 4 под давлением получают нитрил, амиды или эфиры акриловой кислоты, которые используются в синтезе полимеров:

получения полимера поливинилацетата

Ацетилен углеводороды в присутствии щелочных катализаторов присоединяют кетоны и альдегиды (реакция Фаворского):

алкины присоединяют кетоны и альдегиды

Большую практическую роль играет реакция взаимодействия в присутствии ацетиленидов Cu ацетилена с формальдегидом (реакция Реппе):

ацетилен с формальдегидом

Пропаргиловий спирт (I) - выходное соединение при производстве 1,4-бутиленгликоля. Алкины вступают в реакции циклоприсоединения и Дильса - Альдера. Термическая или каталитическая полимеризация приводит к образованию олигомеров и полимеров. Например, под воздействием солей Cu (I) в водном растворе HCl ацетилен димеризуется в винилацетилен, из которого впоследствии получают хлоропрен. Над активным углем ацетилен тримеризуется в бензол в присутствии в качестве катализатора N и (CN)2; в тетрагидрофуране - в циклооктатетраен (реакция Реппе), в присутствии водорода над Ni - в изобутилен. Из метилацетилена можно получить мезитилен и др. В присутствии окислителя и солей меди (I) ацетилен полимеризуется с образованием полиацетилена - карбина, который считается наряду с алмазом и графитом третьей аллотропная видоизменением углерода с кумулированным строением макромолекул:

ацетилен полимеризуется с образованием полиацетилена - карбина

При действии щелочных металлов тройная связь у алкинов перемещается через стадию образования промежуточных но не на конец молекулы. А в присутствии спиртовых растворов щелочи, наоборот, тройная связь перемещается к середине молекулы:

При действии щелочных металлов тройная связь у алкинов перемещается

Алкины с конечными тройными связями (R-C≡CH) обладают высокой для углеводородов кислотностью (для ацетилена рКа≈25) и образуют при действии щелочных, щелочно-земельных металлов, амидов металлов, металлических производных, так называемые ацетилениды МС≡СR, энергично реагирующие с водой, регенерирующим ацетилен углеводороды.

Из магнийорганических соединений легко образуются магнийгалогенопроизводные ацетилен углеводородов (Реактивы Иоцича). Ацетилениды Na, Mg, Li применяют в органическом синтезе для введения в молекулу ацетиленовой группы, например:

магнийгалогенопроизводные ацетилен углеводородов

Дизамещенные ацетилениды Cu2C2 и Ag2C2 синтезируются при воздействии на ацетилен аммиачных растворов солей Cu (I) и Ag, соответственно. Образование Cu2C2 красно-бурого цвета применяют для идентификации ацетилена и его гомологов с конечной тройной связью. Ацетилениды тяжелых металлов в сухом виде – это неустойчивые соединения, которые взрываются от сотрясения. В процессе сгорании ацетилена при доступе чистого кислорода выделяется значительное количество тепла (при этом температура пламени достигает 3000 градусов С), что дает возможность применять ацетилен с целью автогенной резки и сварки металлов. Окислители KMnO4 (в нейтральном или щелочной среде), K2Cr2O7, RuO4, SeO2, CrO3 в кислой среде, озон приводят к расщеплению тройной связи с синтезом карбоновых кислот. В некоторых случаях возможно окисление до α-дикетонов. С конечным тройной связью алкины в указанных условиях образуют карбоновую кислоту и СО2.

Методы извлечения ацетилена в промышленности:

Получают ацетиленовые углеводороды в лабораторных условиях в результате действия спиртового раствора щелочи (КОН - спиртовой раствор) на 1,1- или 1,2-дигалогенопроизводные углеводородов:

алкины из 1,2-дигалогенопроизводных углеводородов

Алкины, в частности полиацетилен, обнаруженные в природе во многих растениях, грибах (Basidiomycetes) например из подсолнечника выделено желтый пентаинен СН3- (С≡С) 5-СН = СН2.

Алкины (ацетиленовые углеводороды) наркотического действия, усиливается с увеличением молекулярной массы субстанции.

Длительная работа специалистов с ацетиленом в промышленных условиях могут привести к функциональным нарушениям нервной системы. Высокие концентрации ацетилена при незначительном содержании кислорода приводят к отеку легких и потере сознания.

Применение алкинов (ацетиленовых углеводородов) в медицине

Ацетилен - один из базовых сырьевых источников промышленности органического синтеза. При конденсации ацетилена с пирролидоном получают N-винилпирролидона, который легко полимеризуется с синтезом поливинилпирролидона (ПВП):

синтез поливинилпирролидона

Полимерные соединения на основе винилпирролидона нашли широкое применение в медицинской практике как вещества при производстве лекарственных препаратов, а многие из них сами являются лекарственными. Например низкомолекулярный поливинилпирролидон (12000-13000 молекулярная масса) образует коллоидные растворы в воде и используется в процессе приготовления гемодеза (кровезаменителя), среднемолекулярные поливинилпирролидон (с молекулярной массой 35000-40000) применяется в фармации как связующее вещество для изготовления таблеток.

При сополимеризации винилпирролидона, акриламида и этилкрилата получают биорастворимый полимер, который обеспечивает удлиненное действие лекарственных препаратов (пролонгируя эффект), например, лекарственных пленок для глаз.

^Наверх

Полезно знать

>